Transformer For Medical AI

Project 6

Zheng Hexing 2023311430 Chang Hwan Kim 2024321234 Maftuna Ziyamova 2024311551 Lee Woo Bin 2025311560

Problem Formulation - Motivation

- Chest radiography is the most frequently performed imaging examination globally
- Essential for screening, diagnosing, and managing numerous life-threatening conditions
- Significant potential for automated interpretation systems to match or exceed radiologist accuracy

Problem Formulation - Goal

- Develop a Transformer-based model capable of accurately diagnosing chest radiographs based on 14 labeled observations
- Generate interpretable heatmap visualizations highlighting model attention areas to support clinical decision-making

Dataset: CheXpert

- 224,316 chest radiographs from 65,240 patients
- 14 labeled clinical observations
- Automated labeling system designed to detect and classify observations, including inherent uncertainties
- Validation set of 200 radiographic studies that was
 manually annotated by 3 board-certified radiologists
- We mostly used <u>CheXpert-v1.0-small</u> that is a smaller, downsampled version of the original dataset and it would be explained why later

We used 3 different architectures: Vision Transformer (ViT), Swin Transformer, BEiT Transformer

Hierarchical architecture:

Cross window connection and Shifted Windows:

Shifted Windows

- Improved global modeling
- Better context aggregation
- Preserves locality

A	С	Section 1
2 20		(_
В		

Cross window connections

- Stronger contextual learning
- Better spatial coherence
- Handles object boundaries well

- BEIT Transformer model is a vision transformer based on self-supervised learning
- It applied BERT's Masked Language Modeling to images by predicting visual tokens
- It uses a Discrete VAE to convert images into codebook-based visual tokens and predicts the masked parts
- BEiT shows strong pretraining performance and is effective for various downstream vision tasks

- Last layer of the model's CLS token trained to gather "information that represents the entire image" during the learning process
- Converting "the attention score value that the CLS token gives to each patch in the image" into "a 2D heatmap"

• Using a **heatmap**, we can understand intuitively where the Vision Transformer model is focusing on the

image

An example of 2D heatmap from our previous baseline model : since the model is **not fully trained** yet, it's **not accurate** : the model **properly focuses** on the part used to determine the disease

An example of 2D heatmap our current baseline model

- Left Image: Original chest radiograph. The yellow arrow indicates the presence of a support device.
- Right Image: Heatmap highlighting the model's area of attention, precisely aligning with the support device's location.

Original image

Heatmap image

Another example of 2D heatmap from our baseline model : correctly classifies support device

Transformer for Medical AI

Results

• BEiT transformer performs best among those models

Results

• No difference in results between training full and light datasets

Discussion and Future Work

- Evaluated transformer architectures (ViT, Swin, BEiT) on CheXpert dataset.
- Compared performance using both full and reduced datasets.
- Why BEiT Performs Best:
 - BEiT leverages masked-image modeling for pre-training, enhancing its ability to generalize and handle diverse image features.
- Visualization and comparison of attention maps across different transformer models will be included on our GitHub.
- Conduct a simple robustness test by adding small Gaussian noise or perturbations to the input images, evaluate performance degradation, and perform additional training to increase robustness if needed.

Thank you for attention!