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Transformer for Medical Al

Problem Formulation - Motivation

e Chest radiography is the most frequently performed imaging examination
globally

e Essential for screening, diagnosing, and managing numerous life-threatening
conditions

e Significant potential for automated
interpretation systems to match or
exceed radiologist accuracy
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Transformer for Medical Al

Problem Formulation - Goal

e Develop a Transformer-based model capable of accurately diagnosing chest
radiographs based on 14 labeled observations

e Generate interpretable heatmap
visualizations highlighting model
attention areas to support clinical
decision-making
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Transformer for Medical Al

Data and Methods

Dataset: CheXpert

e 224,316 chest radiographs from 65,240 patients

e 14 |labeled clinical observations

e Automated labeling system designed to detect and
classify observations, including inherent
uncertainties

e Validation set of 200 radiographic studies that was .,
manually annotated by 3 board-certified radiologists o
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Transformer for Medical Al

Data and Methods

We used 3 different architectures: Vision Transformer (ViT), Swin Transformer, BEIT
Transformer

Vision Transformer (ViT) Transformer Encoder
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Vision Transformer (ViT) Overview




Transformer for Medical Al

Data and Methods

Swin Transformer
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Cross window connection and Shifted Windows :

Layer 1+1

A local window to
perform self-attention

A patch

Shifted Windows
e Improved global modeling
e Better context aggregation
e Preserves locality

Cross window connections
e Stronger contextual learning
e Better spatial coherence
e Handles object boundaries well
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Transformer for Medical Al

Data and Methods

e BEIiT Transformer model is a vision transformer based on self-supervised learning
e |t applied BERT’s Masked Language Modeling to images by predicting visual tokens

e It uses a Discrete VAE to convert SR B et | eaeeg T:%"
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Transformer for Medical Al

Data and Methods

e Last layer of the model’s CLS token - trained to gather “information that represents the entire image” during

the learning process
e Converting “the attention score value that the CLS token gives to each patch in the image” into “a 2D

heatmap”
e Using a heatmap, we can understand intuitively where the Vision Transformer model is focusing on the

image

Image 1 - ViT Attention

An example of 2D heatmap from our previous baseline model An example of 2D heatmap our current baseline model
: since the model is not fully trained yet, it’s not accurate :the model properly focuses on the part used to determine the disease
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Transformer for Medical Al

Data and Methods

e Left Image: Original chest radiograph. The yellow arrow indicates the presence of a support device.
e Right Image: Heatmap highlighting the model’s area of attention, precisely aligning with the support device's location.

Original image Heatmap image

Another example of 2D heatmap from our baseline model
: correctly classifies support device




Transformer for Medical Al

Results

Epoch vs Accuracy (ViT vs Swin vs BEIT)
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e BEIT transformer performs best among those models
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Loss

Epoch vs Loss (ViT vs Swin vs BEIT)

0.30 A
0.28 A
0.26
0.24 -
=®- VIT Train .
—~&— ViT Test L N
-m- Swin Train %
0.22 1 —m— swin Test ‘\.
—#- BEIT Train Tl
—4— BEIT Test “m
2 4 6 8 10
Epoch




Transformer for Medical Al

Results

VIiT Accuracy: Small Dataset vs Full Dataset
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ViT Loss: Small Dataset vs Full Dataset
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e No difference in results between training full and light datasets
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Transformer for Medical Al

Discussion and Future Work

e Evaluated transformer architectures (ViT, Swin, BEiT) on CheXpert dataset.
e Compared performance using both full and reduced datasets.
e Why BEIT Performs Best:
o BEIT leverages masked-image modeling for pre-training, enhancing its ability to
generalize and handle diverse image features.

e Visualization and comparison of attention maps across different transformer models will
be included on our GitHub.

e Conduct a simple robustness test by adding small Gaussian noise or perturbations to the
input images, evaluate performance degradation, and perform additional training to
increase robustness if needed.



Thank you for attention!
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